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Application of Cortical Processing Theory to Acoustical Analysis Ghitza, Messing and Braida

Final Report for STTR Contract No. F49620-03-C-0051, Item 0001AF (March 31, 2005)

A. Introduction
This is a final report for an extended Phase I of the STTR program entitled "Application of

Cortical Processing Theory to Acoustical Analysis". Two quarters were added to the nominal Phase I
four quarters (10/01/2003 - 09/31/2004), covering the time-period 10/1/2004 - 03/31/2005. A
final report of the nominal Phase I was submitted on 09/31/2004 as item 000 lAD and is
reprinted here in Appendix A. The current report describes the progress made in the extended
time period.

The overall goal of the STTR program is to formulate a template-matching operation, with
perception-related rules of integration over time and frequency at its core, in the context of
human perception of degraded speech. In particular, we aim at developing models of auditory
processing capable of predicting consonant confusions by normally-hearing listeners, under a
variety of acoustic distortions. A prerequisite is to formulate the signal processing principles
realized by the auditory periphery in providing the observed graceful degradation of human
performance in noise.

In the nominal four quarters of Phase I we have focused on the role of the descending auditory
pathway in regulating the operating point of the cochlea, resulting in auditory nerve (AN)
representation of speech sounds that are less sensitive to changes in sustained background noise.
A closed-loop model of the auditory periphery, with efferent-inspired feedback, has been
implemented that produces spectrograms of noisy speech that are more consistent with
spectrograms of speech in quiet than are spectrograms produced by open-loop models of the
auditory periphery. The model is described in Appendix A.

B. Towards tuning the Peripheral Auditory Model (PAM)
A need arises for a quantitative methodology to evaluate the adequacy of the PAM to preserve

phonetic information that is perceptually relevant. The challenge is to measure the errors due to
the PAM in isolation from errors created by the "back-end" of the evaluation tool. The approach
we are undertaking is to develop a methodology that brings errors due to the back-end closer to
zero. Towards this end we are using the DRT paradigm (Voiers, 1983), briefly overviewed in
Appendix B. Inspired by Hant and Alwan (2003)1 we use "frozen speech" stimuli, namely, the
same acoustic token is being used for training and for testing, hence the testing token differs
from the training token only by the acoustic distortion. In the frozen-speech methodology we
also assume that the acoustic realizations of the final diphone in both stimuli of a DRT pair are
identical, hence resulting in zero-error contributions to the L2-norm distance measure used by the
DRT mimic. This, however, is not the case even though we restricted the database to utterances
spoken by one male speaker pronouncing the utterances very carefully.

Consequently, to further reduce errors due to the back-end, we are modifying the frozen-
speech methodology by considering an acoustic realization of the DRT word-pairs produced by a
speech synthesizer. The goal is to generate speech stimuli such that, for a given word-pair, the

I Hant and Alwan (2003) evaluated the performance of a functional auditory model in predicting complex-

signal discrimination in noise. Their tasks Included discrimination of spectro-temporal patterns such as

formant sweeps and synthetic CV syllables. Performance was measured for a discrimination task between

two frozen stimuli (which In a detection task is 'noise' or 'signal-plus-noise') by making predictions based

on cell-by-cell differences (in the 12-norm sense) between the two stimuli, where a 'cell' Is a small region
in the time-frequency representation.
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formants' target values of the vowel are identical, hence forcing zero-error contribution to the
L2-norm distance measured over time-frequency cells associated with the final diphone. We are
using Sensimetrics' own speech synthesis product HLsyn2 , tuned to our purpose. Figure 1
demonstrates the extent to which we achieve this goal, for the word-pair Joe-go. Figs. 1 (a) and
1(b) show displays of the simulated IHC responses after temporal smoothing for the words Joe
and go, respectively, in quiet. Only the first 400ms are shown. Fig. 1(c) shows the absolute value
of the difference between the displays on a pixel-by-pixel basis, and Fig. 1(d) shows the time
evolution of the L2-norm distance between the two representations, measured across frequency.
In accordance with our goal, the L2-norm distance outside the time interval spanned by the initial
diphone approaches zero. Informal listening to the synthetic DRT database suggests a good
speech quality; in quiet, DRT test results in a perfect score.

During the past quarter we have generated two sets of recordings in quiet and in noisy
conditions, one for naturally spoken DRT words and one for synthetic DRT words. We used
speech-shape noise at three intensities (70, 60 and 50 dbSPL) and at three SNRs (10, 5 and 0dB).
Currently we conduct a formal DRT test for both sets, using 9 subjects with 4 repetitions each
(this will set the variance to 2%). This data is needed in order to test whether the usage of
synthetic stimuli worsens human performance (especially in the presence of noise); a significant
drop in performance may indicate an increased role of the cognitive layers.

Figures 2 and 3 present DRT scores for naturally spoken (Fig. 2) and synthetic (Fig. 3) DRT
words in the presence of speech-shape noise, with dbSPL (columns) and SNR (rows) as
parameters. Shown are scores of one listener averaged over 4 repetitions. Overall number of
errors ("Grand Mean") is somewhat higher for the synthetic DRT stimuli, but the error
distribution among the phonetic features are reasonably similar. One exception in the Nasality
dimension; Much fewer errors are being made listening to the synthetic stimuli. A thorough
comparison will be made once the data from all 9 subjects will be collected.

Assuming a reasonable performance for the synthetic DRT stimuli we shall tune the efferent-
inspired closed-loop auditory model using an iterative procedure. We shall adjust the parameters
of the model with the goal of predicting the human response; adjusting the parameters will be
constrained to processing principles that are plausible according to current understanding of the
morphology and the neurophysiology of the peripheral auditory system (both ascending and
descending pathways).

C. Towards a distance between diphones with different time scales
During this quarter we have begun a process of evaluating different methods to perform

template matching. We shall be focusing on initial diphones because of the central role they play
in spoken language. Linguistic studies show the relative importance of the initial diphone across
many languages (e.g. Greenberg, 1978; Ohala, 1997), and psychophysical studies show its
relative importance in phone perception (e.g. Ghitza, 1993).

Conceptually, the input to the template-matching box is an auditory representation of the
acoustic signal. For diphone identification task we currently study a model suggested by
Hopfield (2004). The model is motivated by processing principles that have been observed by

z The HLsyn speech synthesis system was developed by Stevens and colleagues at Sensimetrics

Corporation (Stevens and Bickley, 1991; Hanson and Steven, 2002). It is a quasi-articulatory based system

driven by a 13-component vector updated every Sins. The 13 components are the fundamental frequency,

the first four formants, and eight more parameters related to the physiology of speech production.

2
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neurophysiological measurements in basic neural circuits in cortical areas. From our perspective,
the most relevant property is the apparent invariance to time-scale in spatiotemporal input
patterns. We have begun to study Hopfield's model in two fronts:
1. We have implemented a computational model following guidelines provided by Hopfield (in

Matlab). The model uses crude front-end in the form of 20 channels, equally distributed on
the MEL scale. Each channel feeds an array of 100 "Layer-I" Integrate-And-Fire (IAF)
neurons. These neurons differ only in their threshold of firing; the thresholds are linearly
distributed. All 2000 Layer-I neurons are synchronized via a weak-intensity low-frequency
oscillation drive. For each MEL channel a "patch" of 10 successive neurons is formed, chosen
at random from the 100 Layer-I neuron-array. The model also uses 2000 "Layer-II" IAF
neurons; the input to a given Layer-Il neuron is a linear combination (with fixed weights) of 5
Layer-I patches; the patches are chosen at random 3. The input to a Layer-I neuron is the
critical-band power. A differential equation is solved, with physiologically-plausible
parameters. When the action-potential reaches the threshold a spike is fired, the action-
potential is being reset to zero and a refractory-time is being set. The Layer-lI neurons serve,
in principle, as coincidence detectors; input is the linear sum of Layer-I neuron spikes
produced in the 5 patches. A particular time-frequency "signature" leads to synchronous firing
of Layer-I neurons, which leads to a firing of a Layer-lI neuron. Weights are equal and fixed
(i.e. no learning/training). The collective firing of the Layer-Il neuron-array at time to,
normalized to [0, 1], represents the probability of the input time-interval prior to to to be the
acoustic realization of a particular diphone. The properties of the model are being studied
computationally for various speech stimuli; we will document our finding in future reports.

2. Mohan Sondhi has begun an analytical study of the response of an IAF neuron to dynamic
input signals. Note the non-linear nature of the IAF circuit. In particular, we would like to
understand how the neuron responds to inputs that differ only in time-scale.

SIn principle we could exhausts all combinations of 5 (patches) out of 20 (channels); this would result in

too many layer-Il neurons. Instead, a linear combination of 5 patches, chosen at random, is assigned for

2000 neurons.
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Figure 1. (a) "Rate" representation of the word Joe (first 400ms), in quiet. Abscissa - time; Ordinate -
frequency. Consonant-to-vowel transition occurs at 200ms. (b) Same as (a) for the word go. (c) The
absolute value of the difference between the displays on a pixel-by-pixel basis. (d) The time evolution of
the L2-norm distance between the two representations measured across frequency. The L2-norm distance
outside the time interval spanned by the initial diphone approaches zero.
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Appendix A

Status Report for STTR Contract No. F49620-03-C-0051, Item 000lAD (Sept. 30, 2004)

A. INTRODUCTION
The overall goal of this STTR program is to formulate perception-related integration rules

over time and frequency - presumably realized at post Auditory Nerve (AN) layers - in the
context of speech perception in the presence of environmental noise. In particular, we aim at
developing models of auditory processing capable of predicting phonetic confusions by
normally-hearing listeners, under a variety of acoustic distortions. A prerequisite is to formulate
the signal processing principles realized by the auditory system in providing the observed
graceful degradation of human performance in noise.

Towards this end we suggest to model two interleaving functions: (1) the role of the
descending pathway in regulating the operating point of the cochlea, resulting in AN
representation of speech sounds that are less sensitive to changes in environmental conditions,
and (2) the role of post-AN functions in extracting important acoustic-phonemic cues from the
AN firing patterns. The underlying assumption is that the regulating mechanism and the post-AN
mechanisms work in concert. Current models of the periphery are based upon the ascending
pathway up through the AN. We propose to utilize the role of the descending pathway, mainly
the Medial Olivocochlear (MOC4) feedback mechanism, and the way the ascending and the
descending pathways interact. As a case study we shall focus on processing of speech in the
presence of additive speech-shaped noise. It is suggested that the cochlear response in the
presence of background noise is (much) more stable than the output from current feed-forward
models. This observation is based upon the physiological and psychophysical evidence we
currently have about the possible role of the MOC efferent system (see summary in Sec. B. of
the report). To model functions of post-AN processing we propose a psychophysically based
approach. The post-AN functions will be modeled as a template-matching system, where a time-
frequency input pattern is matched against internal templates using a psychophysically derived
distance measure. We suggest that the success of post-AN mechanisms in reliably extracting
speech-related information in noise is partly due to the "stabilizing" effect of the efferent system.

This report summarizes work that has been completed in Phase I of the STTR program. We
have implemented a closed-loop model of the auditory periphery with efferent-inspired feedback
and have demonstrated its ability to produce spectrograms of noisy speech samples that are more
consistent with spectrograms of speech in quiet than are spectrograms produced by open-loop
models of the auditory periphery. As a baseline system we used a model of an open-loop linear
cochlea whose details are described in Sec. C. 1. In Sec. C.2. we compare the performance of the
baseline system with that of a model of an open-loop nonlinear cochlea. In Sec. C.3 we introduce
a model of closed-loop nonlinear cochlea with an efferent-inspired feedback.

The output of each model was defined as the temporal response of the simulated Inner Hair
Cell (IHC) array, organized in the form of spectrograms. The output of the closed-loop model
was compared quantitatively with the output of the baseline open-loop model. The criterion for
comparison was the amount of consistency between the spectrographic representation of noisy

4 The origin of the MOC nerve bundle is in the medial region of the superior olive, and it projects back to

different places along the cochlea partition in a tonotopical manner, making synapse connections to the
outer-hair cells. Detailed description is provided in Sec. B.

8
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speech segments and that of the corresponding speech signals in quiet. Consistency was
measured in terms of the distance between the noisy representations (with noise-intensity and
SNR as parameters) and the representations of the speech in quiet (the reference). Sec. D.
presents the quantitative evaluation. It shows that the closed-loop auditory model produces
representations that are far more stable compared to those produced by the baseline (open-loop)
auditory model. Whether this model of auditory periphery preserves phonetic information in
patterns that follow psychophysical patterns will be rigorously inspected during Phase 11, where
the central part of the proposal, i.e. the formulation of a perception-based distance measure, will
be established.

B. MOC EFFERENTS - BREIF REVIEW
B.1 MOC efferents: morphology and physiology

Numerous papers have been published providing detailed morphological and
neurophysiological description of the medial olivocochlear (MOC) efferent feedback system
(e.g., Guinan, 1996; May and Sachs, 1992; Winslow and Sachs, 1988). MOC efferents originate
from neurons medial, ventral and anterior to the medial superior olivary nucleus (MSO), have
myelinated axons, and terminate directly on Outer Hair Cells (OHC). Medial efferents project
predominantly to the contralateral cochlea, the innervation is largest near the center of the
cochlea, with the crossed innervation biased toward the base compared to the uncrossed
innervation (e.g., Guinan, 1996). Roughly two-third of medial efferents respond to ipsilateral
sound, one-third to contralateral sound, and a small fraction to sound in either ear. Medial
efferents have tuning curves that are similar to, or slightly wider than, those of AN fibers, and
they project to different places along the cochlear partition in a tonotopical manner. Finally,
medial efferents have longer latencies and group delays than AN fibers. In response to tone or
noise bursts, most MOC efferents have latencies of 10-40ms. Group delays measured from
modulation transfer functions are much more tightly clustered, averaged at about 8ms. We
currently do not have a clear understanding of the functional role of this mechanism. Few
suggestions have been offered, such as shifting of sound-level functions to higher sound levels,
antimasking effect on responses to transient sounds in a continuous masker, preventing damage
due to intense sound (e.g., Guinan, 1996). One speculated role, which is of particular interest for
this proposal, is a dynamic regulation of the cochlear operating point depending on background
acoustic stimulation, resulting in robust human performance in perceiving speech in a noisy
background. There are a few neurophysiologcal studies to support this role. Using anesthetized
cats with noisy acoustic stimuli, Winslow and Sachs (1988), for example, showed that by
stimulating the MOC nerve bundle electrically, the dynamic range of discharge rate at the AN is
partly recovered. Measuring neural responses of awake cats to noisy acoustic stimuli, May and
Sachs (1992) showed that the dynamic range of discharge rate at the AN level is only moderately
affected by changes in levels of background noise.

B.2 MOC efferents: psychophysics - speech and speech-like stimuli
Few behavioral studies indicate the potential role of the MOC efferent system in perceiving

speech in the presence of background noise. Dewson (1968) presented evidence that MOC
lesions impair the abilities of monkeys to discriminate the vowel sounds [i] and [u] in the
presence of masking noise but have no effect on the performance of this task in quiet. More
recently, Giraud et al. (1997), and Zeng et al. (2000) showed that the performance of human
subjects after they undergo a vestibular neurectomy (presumably resuling in a severed MOC

9



Application of Cortical Processing Theory to Acoustical Analysis Ghitza, Messing and Braida

feedback) deteriorates phoneme perception when the speech is presented in a noisy background.
These speech reception experiments, however, provide questionable evidence because of surgical
side effects such as uncertainties about the extent of the lesion and possible damage to cochlear
elements. Recently, Ghitza (2004) quantified the role of the MOC efferent system by performing
a test of initial consonant reception (the Diagnostic Rhyme Test) using subjects with normal
hearing. Activation of selected parts of the efferent system was attempted by presenting speech
and noise in various configurations (gated/continuous, monaural/binaural). Initial results of these
experiments show a gated/continuous difference analogous to the 'masking overshoot' in tone
detection. These results are interpreted to support the hypothesis of a significant efferent
contribution to initial phone discrimination in noise.

B.3 Summary
Mounting physiological data exists in support of the effect of MOC efferents on the

mechanical properties of the cochlea and, in turn, on the enhancement of signal properties at the
auditory nerve level, in particular when the signal is embedded in noise. The current theory on
the role of MOC efferents in hearing is that they cause a reduction in OHC motility and shape
that results in increased basilar membrane stiffhess which in turn produces an inhibited IHC
response in the presence of noise that is comparable to the IHC response produced by a noiseless
environment. We develop this popular theory into a closed-loop model of the peripheral
auditory model that adaptively adjusts its cochlear operating point such that the time-frequency
IHC rate responses are more consistent over clean and noisy conditions than state-of-the-art
open-loop systems that neglect efferent feedback.

C. PHASE I - MODEL DEVELOPMENT
The overall goal of Phase I was to develop a closed-loop model of the auditory periphery that

incorporates the human efferent system and to demonstrate the ability of such a model to
produce displays of noisy speech that are more consistent with displays of speech in quiet than
are displays produced by open-loop models. In embarking on this endeavor, we tested different
models of cochlear filters, linear [Gammatone filters (Patterson, 1995)] as well as nonlinear
[MBPNL (Goldstein, 1990)].

In implementing a cochlear model we use a bank of overlapping cochlear channels uniformly
distributed along the ERB scale (Moore and Glasberg, 1983), four channels per ERB. Each
cochlear channel comprises a filter (Gammatone or MBPNL) followed by a generic model of the
IHC (half-wave rectification followed by a low-pass filter, representing the reduction of
synchrony with CF). The dynamic range of the simulated IHC response is restricted - from
below and above - to a "dynamic-range window" (DRW), representing the observed dynamic
range at the AN level (i.e. the AN rate-intensity function); the lower bound and upper bound of
the DRW stand for the spontaneous rate and rate-saturation, respectively.

C.1. Linear cochlear model with Gammatone filters
A linear Gammatone filter bank, which represents a linear based filtering strategy, was first

examined as a baseline. Displays of the simulated IHC response were examined for noise
intensity levels of 70, 60, and 50dbSPL and for SNR values of 20, 10, and 5dB. Figure A.2
provides a spectrographic example. The figure contains a 3-by-3 matrix of images; the abscissa
represents the intensity of the background noise, in dB _SPL. The ordinate represents SNR, in
dB. Each image represents the simulated IHC responses to the diphone s-a (duration of 249ms)
spoken by a male speaker. Figure A.2 depicts the simulated open-loop Gammatone IHC

10
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response, with DRW=40dB. The position of the DRW was set such that speech is visible for the
50dbSPLx5dbSNR condition. Upper bound of the DRW was chosen such that
70dbSPLx2OdbSNR condition is not oversaturated. A large inconsistency is observed across
varying noise intensity and SNR levels. Note that for the DRW we chose, at 50dbSPL noise
intensity level much of the speech energy is not present in the simulated IHC response for. Had
the DRW range been shifted lower, more of the speech energy of the 50dbSPL noise intensity
level would have been visible but also much noise.

C.2. Open-loop nonlinear cochlear model
A second model that we examined was Goldstein's Multi Band Pass Non Linear (MBPNL)

model of nonlinear cochlear mechanics (Goldstein, 1990). This model operates in the time
domain and changes its gain and bandwidth with changes in the input intensity, in accordance
with observed physiological and psychophysical behavior. The MBPNL model is shown in
figure A.3. The lower path (HI/H2) is a compressive nonlinear filter that represents the
sensitive, narrowband compressive nonlinearity at the tip of the basilar membrane tuning curves.
The upper path (H3/H2) is a linear filter (expanding function preceded by its inverse results in a
unitary transformation) that represents the insensitive, broadband linear tail response of basilar-
membrane tuning curves (after Goldstein, 1990). The parameter G controls the gain of the tip of
the basilar membrane tuning curves, and is used to model the inhibitory efferent-induced
response in the presence of noise (see Sec. C.3. below). For the open-loop MBPNL model the
tip gain is set to G=4OdB, to best mimic psychophysical tuning curves of a healthy cochlea in
quiet (Goldstein, 1990).

The "iso-input" frequency response of an MBPNL filter at CF of 3400Hz is shown in figure
A.4. The frequency response for the open-loop MBPNL model is shown at the upper-left comer
(i.e. for G=4OdB). For an input signal s(t)=Asin(coot), with A and wo. fixed, the MBPNL behaves
as a linear system with a fixed "operating point" on the expanding and compressive nonlinear
curves, determined by A. Figure A.4 shows the iso-input frequency response of the system for
different values of A. For a given A, a discrete "chirp" signal was presented to the MBPNL, with
a slowly changing frequency. Changes in coo occurred only after the system reached steady-state,
for a proper gain measurement. For a 0dB input level A=I, the gain at CF is approximately 40dB.
As the input level increases the gain drops and the bandwidth increases, in accordance with
physiological and psycho-physical behavior.

Figure A.5 shows the simulated IHC response generated by the open-loop MBPNL to the
diphone s a (same as in Fig. A.2) for noise intensity levels of 70, 60, and 50dbSPL and for SNR
values of 20, 10, and 5dB. The tip-gain is set to G=4OdB and held constant for all SNR and
noise levels. Here, we set DRW=22dB (down from 40dB for the Gammatone) because of the
reduction in the overall dynamic range at the MBPNL output due to its inherent nonlinearity. The
position of the DRW was chosen such that the speech energy of the simulated IHC response for
the 70dbSPLx5dbSNR condition matched that of the same condition of the Gammatone model.
Like the displays produced by the Gammatone model, the open-loop MBPNL displays show a
large inconsistency across varying noise levels. Notice that for both open-loop models
(Gammatone- and MBPNL- based) we could not find a "sweet-spot" for the DRW position that
will provide a consistent display at the output, across rows and columns.
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C.3. Cochlear model with efferent-inspired feedback
From the open-loop MBPNL model, we developed a closed-loop MBPNL model that includes

an efferent-inspired feedback mechanism. Morphologically (e.g. Guinan, 1996), MOC neurons
project to different places along the cochlea partition in a tonotopical manner, making synapse
connections to the outer-hair cells and, hence, affecting the mechanical properties of the cochlea
(e.g. increase in basilar-membrane stiffness). Therefore, we introduce a frequency dependent
feedback mechanism which controls the tip-gain (G) of each MBPNL channel according to the
intensity level of sustained noise at that frequency band. As shown in Fig. A.4, the upper-left
panel represents the nominal response (i.e. healthy cochlea, in quiet), with the tip-gain G=4OdB.
By reducing G, the MBPNL response to weaker stimuli (e.g. background noise) is controlled.
The lower right panel, for example, shows the MBPNL response for G=IOdB. For high energy
tone stimuli the MBPNL response is hardly affected, while the response for low energy stimuli
(e.g. -80dB Re maximum input range) is reduced by some 30dB. In our efferent-inspired model,
G is adjusted such that the average power of the cochlear output, in response to background
noise at the input, will be such that the simulated IHC response to noise will be kept just below
the lower bound of the DRW.

Figure A.6 depicts the simulated IHC response of an intermediate version of our closed-loop
MBPNL model. DRW=22dB, its position is fixed at the same location as in the open-loop
MBPNL model. The value of the tip gain (G) per cochlear channel is adjusted using the average
power per frequency band, computed over 300ms duration of a speech-shaped noise preceding
the speech signal. Due to the nature of the noise-responsive feedback, display of background
noise is largely eliminated for all dbSPLxSNR conditions. At a given SNR, displays of
processed noisy speech are consistent across db SPL noise level (rows in Fig. A.6). As expected,
at a fixed dbSPL level, as the SNR drops (i.e. as the speech energy drops) the intensity of speech
information in the spectrographic display dims (columns in Fig. A.6).

Figure A.8 shows the spectrographic displays of our current closed-loop MBPNL model, were
the output of each MBPNL channel is normalized to a fixed dynamic range. The rational behind
the normalization at the output stems from neurophysiological studies on anesthetized cats with
noisy acoustic stimuli, which show that by stimulating the MOC nerve bundle electrically, the
dynamic range of discharge rate at the AN is recovered (e.g. Winslow and Sachs, 1988)5, as is
illustrated in Fig. A.7. Upon visual examination, it can easily be seen that the displays are even
more consistent across dbSPLxSNR conditions than those of Fig. A.6.

D. QUANTITATIVE EVALUATION
To obtain quantitative results, 96 processed noisy diphone pairs were compared in a simulated

2 alternative forced choice DRT test. Tests were run on the outputs of the open-loop Gammatone
and the efferent-inspired closed-loop MBPNL models, after temporal smoothing. Template
"states" were chosen for each DRT diphone-pair. In this study, the template states were the
processed diphones at the 70dbSPLx 10dbSNR condition (top two panels in figure A.9). The test
stimuli were the same diphone tokens in different noise intensity levels and different values of
SNR. For a given test token the MSE distance between the selected test token and the two

5 Concurring with this observation are measurements of neural responses of awake cats to noisy acoustic

stimuli, showing that the dynamic range of discharge rate at the AN level is hardly affected by changes in
levels of background noise (May and Sachs, 1992).
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template states was computed. The state template with the smaller MSE distance from the test
token was selected as the simulated DRT response. Figure A. 10 shows the average percent
correct responses as a function of noise intensity level for the open-loop Gammatone (+) and the
closed-loop MBPNL (x). Average is over all DRT words and all SNR values. As the plot
indicates, the closed-loop MBPNL model behaved more consistently over all noise intensity
levels than the open-loop system. The performance of the open-loop system significantly
degraded as the noise intensity level varied further from the template noise intensity level
(70dbSPL in this example). Figure A.I 1 shows a more detailed version of Fig. A.10; errors -
averaged is over all DRT words - are plotted as a function of SNR, with noise intensity (in
dbSPL) as a parameter. For the open-loop model best performance occurs at 70dbSPL - the
template noise condition (as expected, no errors occur at IOdbSNR - the template SNR). The
extent of inconsistency is reflected by the poor (close to chance) performance at all other noise
intensities, for all SNR values (an unexplained exception is the 60dbSPLx2OdbSNR condition).
In contrast, performance with the closed-loop MBPNL model is very consistent across all
conditions. Figure A. 12 is yet another way of looking at the same data; here, errors are plotted as
a function of noise intensity, with SNR as the parameter. Similar conclusion can be drawn, i.e.
for the open-loop model, for each SNR best performance occurs at 70dbSPL (the template noise
condition); at all other noise intensity levels performance is close to chance. Far fewer errors are
made when the closed-loop model is used; most the errors are in noise intensity levels away from
the template noise condition.

E. SUMMARY
This report summarizes work that has been completed in Phase I of the STTR program. We

have implemented a closed-loop model of the auditory periphery with an efferent-inspired
feedback and have quantitatively demonstrated its ability to produce spectrograms of noisy
speech samples that are far more consistent with spectrograms of speech in quiet than are
spectrograms produced by an open-loop model of the auditory periphery. This increase in
performance in noise and increased robustness mimics the general observed behavior of humans.
Whether this model of auditory periphery preserves phonetic information in patterns that follow
psychophysical patterns will be rigorously inspected during Phase II, where the central part of
the proposal, i.e. the formulation of a perception-based distance measure, will be established.
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Figure A.1. A schematic description of our conceptual model of perception of diphones
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Figure A.2. Simulated IHC response to diphone s-a, produced by an open-loop Gammatone model; DRW=40db;

Position of DRW set such that speech is visible for the 50 db SPL Noise and SNR=5db condition. Upper bound of
DRW chosen such that 70dB-SPLxSNR=2OdB condition is not oversaturated.
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Figure A.S. Simulated IHC response to diphone s-a, produced by an open-loop MBPNL model; Fixed C=40dB;
DRW=22dB; DRW chosen to approximately match speech power of the Open loop Gammatone model displays of
fiqure 2.
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Figure A.6. Simulated IHC response to diphone sa, produced by an intermediate closed-loop MBPNL model.
DRW is same as in open-loop MBPNL mode.
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Figure A.7. Illustration of the observed efferent-induced dynamic range recovery of the discharge rate in the presence

of background noise (e.g. Winslow and Sachs, 1988). Discharge rate versus Tone level is cartooned in quiet condition

(full dynamic range, black); anesthesized cat, i.e. no efferents activity (much reduced dynamic range, red) and with
electrical stimulation of COCB nerve bundle.
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Figure A.8. Simulated IHC response to diphone s-a, produced by the efferent-inspired closed-Loop MBPNL.

DRW is same as in open-loop MBPNL mode. Output of each MBPNL channel is normalized to a fixed dynamic
range.
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Figure A.9. Temporally smoothed simulated IHC response produced by the efferent-inspired closed-Loop

MBPNL (with normalization at the output). Representations at the 70dB-SPLxSNR= 1OdB condition are

chosen as template "states". A mimic of the "one-interval two-alternative forced-choice" paradigm is
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Figure A.10. Percent correct responses as a function of noise intensity level for the open-loop Gammatone (+)

and the closed-loop MBPNL (x), using the 70dB-SPLxSNR= IOdB condition as template. Average is over all DRT
words and all SNR values.
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Figure A.1 1. Same data as in Fig. A.1 0, in more details. Errors (in percent) are averaged over all DRT words and
plotted as a function of SNR, with noise intensity (in dBSPL) as a parameter
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plotted as a function of noise intensity, with SNR as a parameter.
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Appendix B

A Brief Overview of Voiers' DRT
The DRT (Diagnostic Rhyme Test) version of Voiers (1983) is a way of measuring the
intelligibility of processed speech and has been used extensively in evaluating speech coders.
From an acoustic point of view, Voiers' DRT database covers initial dyads of spoken CVCs. The
database consists of 96 pairs of confusable words spoken in isolation. Words in a pair differ only
in their initial consonants. The dyads are equally distributed among 6 acoustic-phonetic
distinctive features and among 8 vowels (hence 2 word-pairs per [quadrantxfeature] cell). The
feature classification (outlined in Table 1) follows the binary system suggested by Jakobson,
Fant and Halle (Jakobson et al., 1952), and the vowels are [ee] and [it] (High-Front), [eh] and
[at] (High-Back), [oo] and [oh] (Low-Front) and [aw] and [ah] (Low-Back). In our version of the
DRT the vowels are collapsed into 4 quadrants (High-Front, High-Back, Low-Front, Low-Back),
hence 4 word-pairs per a [quadrantxfeature] cell.

The psychophysical procedure is carefully controlled to assure a task with minimum cognitive
load. The listeners are well trained and are very familiar with the database, including the voice
quality of the individual speakers. The experiment uses a one-interval two-alternative forced-
choice paradigm. First, the subject is presented visually with a pair of rhymed words. Then, one
word of the pair (selected at random) is presented aurally and the subject is required to indicate
which of the two words was played. This procedure is repeated until all the words in the database
have been presented. In our version of the DRT words are played sequentially, one every 2.5 - 3
seconds; the visual presentation precedes the aural presentation by I sec., and the decision
(binary) must be made within 1 sec of the aural presentation. Words in the database are divided
into "runs", and the duration of one run is limited to about 2.5 minutes (to avoid fatigue).

The scores of one complete DRT-session will be tabulated with a cell granularity of
[quadrantxfeature], as illustrated in Table 2. A table-entry contains the number of words per cell
that where mistakenly identified; it is an integer between 0 and 4, since the total number of
words per cell is 4.

Our knowledge about the acoustic correlates of the Jakobsonian dimensions provides diagnostic
information about temporal representation of speech, while the vowel quadrant identity provides
information about the frequency range (i.e. location of the formants in action). Hence, the
integrated information can link phonetic confusions with their origin in the time-frequency plane.
We shall utilize the usage of such linkage to guide the procedure of tuning the parameters of the
auditory model.
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Table 1. Samples of word-pairs used in Voiers' DRT (1983).

Voicing (VC) Nasality (NS) Sustention Wn
(Voiced - Unvolced) (Nasal - Ora0 (Sustained -interrupteg)

veal - feel meat - beat vee - bee

zed - said neck - deck fence - pence

Sibilatilon (S0) Graveness (GV) Compactness (CM)
(Slbilated - Assibilated) (Grave - Acute) (Compact - Diffuse)

cheep - keep peak - teak key - tea

jot - got wad - rod got - dot

Table 2. A sample of the outcome of one DRT session, one stimulus condition, and one subject. A table-entry contains
the number of words per [quadrantxfeature] bin mistakenly identified (an integer between 0 and 4).

VC NS ST SB GV CM

+ -- + +- + - + - +

High-Front 0 0 1 1 0 4 2 2 2 1 1 1

High-Back 1 1 2 0 2 1 1 0 1 3 0 0

Low-Front 1 0 0 0 1 3 0 1 1 4 1 1

Low-Back 1 1 1 1 3 4 2 3 3 2 1 0

Table 3. The Jakobsonian dimensions and their acoustical correlates

Voicing - Periodicity and shorter time of onset duration (Voiced)
- Discriminability - at [0,1000] Hz

Nasality - Formants at 200, 800 and 2200-Hz
- Nulls throughout the frequency range (Nasals)
- Discriminability - at [0,1000] Hz

Sustention - Gradual onset and presence of mid-frequency noise (Sustained)
- Durational and high-frequency cues

Sibilation - Higher-frequency noise and greater duration (Sibilant)
- Duration is most important acoustical correlate

Graveness - Origin and direction of second-formant transitions
- Grave consonants - steep upward transitions

- Acute consonants - downward second-formant transitions

- Greater concentration of low-frequency energy (Grave)

Compactness - Concentration of spectral energy at mid-frequency range (Compact)
- More-widely separated spectral peaks (Diffused)
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